43 research outputs found

    Energy-efficient Communications in Cloud, Mobile Cloud and Fog Computing

    Get PDF
    This thesis studies the problem of energy efficiency of communications in distributed computing paradigms, including cloud computing, mobile cloud computing and fog/edge computing. Distributed computing paradigms have significantly changed the way of doing business. With cloud computing, companies and end users can access the vast majority services online through a virtualized environment in a pay-as-you-go basis. %Three are the main services typically consumed by cloud users are Infrastructure as a Service (IaaS), Platform as a Service (PaaS) and Software as a Service (SaaS). Mobile cloud and fog/edge computing are the natural extension of the cloud computing paradigm for mobile and Internet of Things (IoT) devices. Based on offloading, the process of outsourcing computing tasks from mobile devices to the cloud, mobile cloud and fog/edge computing paradigms have become popular techniques to augment the capabilities of the mobile devices and to reduce their battery drain. Being equipped with a number of sensors, the proliferation of mobile and IoT devices has given rise to a new cloud-based paradigm for collecting data, which is called mobile crowdsensing as for proper operation it requires a large number of participants. A plethora of communication technologies is applicable to distributing computing paradigms. For example, cloud data centers typically implement wired technologies while mobile cloud and fog/edge environments exploit wireless technologies such as 3G/4G, WiFi and Bluetooth. Communication technologies directly impact the performance and the energy drain of the system. This Ph.D. thesis analyzes from a global perspective the efficiency in using energy of communications systems in distributed computing paradigms. In particular, the following contributions are proposed: - A new framework of performance metrics for communication systems of cloud computing data centers. The proposed framework allows a fine-grain analysis and comparison of communication systems, processes, and protocols, defining their influence on the performance of cloud applications. - A novel model for the problem of computation offloading, which describes the workflow of mobile applications through a new Directed Acyclic Graph (DAG) technique. This methodology is suitable for IoT devices working in fog computing environments and was used to design an Android application, called TreeGlass, which performs recognition of trees using Google Glass. TreeGlass is evaluated experimentally in different offloading scenarios by measuring battery drain and time of execution as key performance indicators. - In mobile crowdsensing systems, novel performance metrics and a new framework for data acquisition, which exploits a new policy for user recruitment. Performance of the framework are validated through CrowdSenSim, which is a new simulator designed for mobile crowdsensing activities in large scale urban scenarios

    Profiling Performance of Application Partitioning for Wearable Devices in Mobile Cloud and Fog Computing

    Get PDF
    Wearable devices have become essential in our daily activities. Due to battery constrains the use of computing, communication, and storage resources is limited. Mobile Cloud Computing (MCC) and the recently emerged Fog Computing (FC) paradigms unleash unprecedented opportunities to augment capabilities of wearables devices. Partitioning mobile applications and offloading computationally heavy tasks for execution to the cloud or edge of the network is the key. Offloading prolongs lifetime of the batteries and allows wearable devices to gain access to the rich and powerful set of computing and storage resources of the cloud/edge. In this paper, we experimentally evaluate and discuss rationale of application partitioning for MCC and FC. To experiment, we develop an Android-based application and benchmark energy and execution time performance of multiple partitioning scenarios. The results unveil architectural trade-offs that exist between the paradigms and devise guidelines for proper power management of service-centric Internet of Things (IoT) applications

    A Machine Learning-based Framework for Optimizing the Operation of Future Networks

    Get PDF
    5G and beyond are not only sophisticated and difficult to manage, but must also satisfy a wide range of stringent performance requirements and adapt quickly to changes in traffic and network state. Advances in machine learning and parallel computing underpin new powerful tools that have the potential to tackle these complex challenges. In this article, we develop a general machinelearning- based framework that leverages artificial intelligence to forecast future traffic demands and characterize traffic features. This makes it possible to exploit such traffic insights to improve the performance of critical network control mechanisms, such as load balancing, routing, and scheduling. In contrast to prior works that design problem-specific machine learning algorithms, our generic approach can be applied to different network functions, allowing reuse of existing control mechanisms with minimal modifications. We explain how our framework can orchestrate ML to improve two different network mechanisms. Further, we undertake validation by implementing one of these, mobile backhaul routing, using data collected by a major European operator and demonstrating a 3×reduction of the packet delay compared to traditional approaches.This work is partially supported by the Madrid Regional Government through the TAPIR-CM program (S2018/TCS-4496) and the Juan de la Cierva grant (FJCI-2017-32309). Paul Patras acknowledges the support received from the Cisco University Research Program Fund (2019-197006)

    pDCell: an End-to-End Transport Protocol for Mobile Edge Computing Architectures

    Get PDF
    Pendiente publicación 2019To deal with increasingly demanding services and the rapid growth in number of devices and traffic, 5G and beyond mobile networks need to provide extreme capacity and peak data rates at very low latencies. Consequently, applications and services need to move closer to the users into so-called edge data centers. At the same time, there is a trend to virtualize core and radio access network functionalities and bring them to edge data centers as well. However, as is known from conventional data centers, legacy transport protocols such as TCP are vastly suboptimal in such a setting. In this work, we present pDCell, a transport design for mobile edge computing architectures that extends data center transport approaches to the mobile network domain. Specifically, pDCell ensures that data traffic from application servers arrives at virtual radio functions (i.e., C-RAN Central Units) timely to (i) minimize queuing delays and (ii) to maximize cellular network utilization. We show that pDCell significantly improves flow completion times compared to conventional transport protocols like TCP and data center transport solutions, and is thus an essential component for future mobile networks.This work is partially supported by the European Research Council grant ERC CoG 617721, the Ramon y Cajal grant from the Spanish Ministry of Economy and Competitiveness RYC-2012-10788, by the European Union H2020-ICT grant 644399 (MONROE), by the H2020 collaborative Europe/Taiwan research project 5G-CORAL (grant num. 761586) and the Madrid Regional Government through the TIGRE5-CM program (S2013/ICE-2919). Further, the work of Dr. Kogan is partially supported by a grant from the Cisco University Research Program Fund, an advised fund of Silicon Valley Community Foundation.No publicad

    Energy Efficient Data Collection in Opportunistic Mobile Crowdsensing Architectures for Smart Cities

    Get PDF
    Smart cities employ latest information and communication technologies to enhance services for citizens. Sensing is essential to monitor current status of infrastructures and the environment. In Mobile Crowdsensing (MCS), citizens participate in the sensing process contributing data with their mobile devices such as smartphones, tablets and wearables. To be effective, MCS systems require a large number of users to contribute data. While several studies focus on developing efficient incentive mechanisms to foster user participation, data collection policies still require investigation. In this paper, we propose a novel distributed and energy-efficient framework for data collection in opportunistic MCS architectures. Opportunistic sensing systems require minimal intervention from the user side as sensing decisions are application- or device-driven. The proposed framework minimizes the cost of both sensing and reporting, while maximizing the utility of data collection and, as a result, the quality of contributed information. We evaluate performance of the framework with simulations, performed in a real urban environment and with a large number of participants. The simulation results verify cost-effectiveness of the framework and assess efficiency of the data generation process

    A Cost-Effective Distributed Framework for Data Collection in Cloud-based Mobile Crowd Sensing Architectures

    Get PDF
    Mobile crowd sensing received significant attention in the recent years and has become a popular paradigm for sensing. It operates relying on the rich set of built-in sensors equipped in mobile devices, such as smartphones, tablets and wearable devices. To be effective, mobile crowd sensing systems require a large number of users to contribute data. While several studies focus on developing efficient incentive mechanisms to foster user participation, data collection policies still require investigation. In this paper, we propose a novel distributed and sustainable framework for gathering information in cloud-based mobile crowd sensing systems with opportunistic reporting. The proposed framework minimizes cost of both sensing and reporting, while maximizing the utility of data collection and, as a result, the quality of contributed information. Analytical and simulation results provide performance evaluation for the proposed framework by providing a fine-grained analysis of the energy consumed. The simulations, performed in a real urban environment and with a large number of participants, aim at verifying the performance and scalability of the proposed approach on a large scale under different user arrival patterns

    Profiling Energy Efficiency of Mobile Crowdsensing Data Collection Frameworks for Smart City Applications

    Get PDF
    Mobile crowdsensing (MCS) has emerged in the last years and has become one of the most prominent paradigms for urban sensing. In MCS, citizens actively participate in the sensing process by contributing data with their smartphones, tablets, wearables and other mobile devices to a collector. As citizens sustain costs while contributing data, i.e., the energy spent from the batteries for sensing and reporting, devising energy efficient data collection frameworks (DCFs) is essential. In this work, we compare the energy efficiency of several DCFs through CrowdSenSim, which allows to perform large-scale simulation experiments in realistic urban environments. Specifically, the DCFs under analysis differ one with each other by the data reporting mechanism implemented and the signaling between users and the collector needed for sensing and reporting decisions. Results reveal that the key criterion differentiating DCFs' energy consumption is the data reporting mechanism. In principle, continuous reporting to the collector should be more energy consuming than probabilistic reporting. However, DCFs with continuous reporting that implement mechanisms to block sensing and data delivery after a certain amount of contribution are more effective in harvesting data from the crowd

    Game-Theoretic Recruitment of Sensing Service Providers for Trustworthy Cloud-Centric Internet-of-Things (IoT) Applications

    Get PDF
    Widespread use of connected smart devices that are equipped with various built-in sensors has introduced the mobile crowdsensing concept to the IoT-driven information and communication applications. Mobile crowdsensing requires implicit collaboration between the crowdsourcer/recruiter platforms and users. Additionally, users need to be incentivized by the crowdsensing platform because each party aims to maximize their utility. Due to the participatory nature of data collection, trustworthiness and truthfulness pose a grand challenge in crowdsensing systems in the presence of malicious users, who either aim to manipulate sensed data or collaborate unfaithfully with the motivation of maximizing their income. In this paper, we propose a game-theoretic approach for trustworthiness-driven user recruitment in mobile crowdsensing systems that consists of three phases: i) user recruitment, ii) collaborative decision making on trust scores, and iii) badge rewarding. Our proposed framework incentivizes the users through a sub-game perfect equilibrium (SPE) and gamification techniques. Through simulations, we show that the platform utility can be improved by up to the order of 50\% while the average user utility can be increased by at least 15\% when compared to fully-distributed and user-centric trustworthy crowdsensing

    Why Energy Matters? Profiling Energy Consumption of Mobile Crowdsensing Data Collection Frameworks

    Get PDF
    Mobile Crowdsensing (MCS) has emerged in the last years and has become one of the most prominent paradigms for urban sensing. The citizens actively participate in the sensing process by contributing data with their mobile devices. To produce data, citizens sustain costs, i.e., the energy consumed for sensing and reporting operations. Hence, devising energy efficient data collection frameworks (DCF) is essential to foster participation. In this work, we investigate from an energy-perspective the performance of different DCFs. Our methodology is as follows: (i) we developed an Android application that implements the DCFs, (ii) we profiled the energy and network performance with a power monitor and Wireshark, (iii) we included the obtained traces into CrowdSenSim simulator for large-scale evaluations in city-wide scenarios such as Luxembourg, Turin and Washington DC. The amount of collected data, energy consumption and fairness are the performance indexes evaluated. The results unveil that DCFs with continuous data reporting are more energy-efficient and fair than DCFs with probabilistic reporting. The latter exhibit high variability of energy consumption, i.e., to produce the same amount of data, the associated energy cost of different users can vary significantly
    corecore